Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Clinics ; 68(4): 511-515, abr. 2013. tab
Article in English | LILACS | ID: lil-674248

ABSTRACT

OBJECTIVE: The goal of this study was to observe spontaneous cortical activity and cortical activity modulated by tinnitus-matched sound in tinnitus patients and healthy subjects with no otoneurologic symptoms. METHOD: Data were prospectively collected from 50 tinnitus patients and 25 healthy subjects. Cortical activity was recorded in all subjects with eyes closed and open and during photostimulation, hyperventilation and acoustic stimulation using 19-channel quantitative electroencephalography. The sound applied in the tinnitus patients was individually matched with the ability to mask or equal the tinnitus. The maximal and mean amplitude of the delta, theta, alpha and beta waves and the type and amount of the pathologic EEG patterns were noted during each recording. Differences in cortical localization and the influence of sound stimuli on spontaneous cortical activity were evaluated between the groups. RESULTS: The tinnitus group exhibited decreased delta activity and increased alpha and beta activity. Hyperventilation increased the intensity of the differences. The tinnitus patients had more sharp-slow waves and increased slow wave amplitude. Sound stimuli modified the EEG recordings; the delta and beta wave amplitudes were increased, whereas the alpha-1 wave amplitude was decreased. Acoustic stimulation only slightly affected the temporal region. CONCLUSION: Cortical activity in the tinnitus patients clearly differed from that in healthy subjects, i.e., tinnitus is not a “phantom” sign. The changes in cortical activity included decreased delta wave amplitudes, increased alpha-1, beta-1 and beta-h wave amplitudes and pathologic patterns. Cortical activity modifications occurred predominantly in the temporal region. Acoustic stimulation affected spontaneous cortical activity only in tinnitus patients, and although the applied sound was individually matched, the pathologic changes were only slightly improved. .


Subject(s)
Adolescent , Adult , Female , Humans , Male , Middle Aged , Young Adult , Acoustic Stimulation/methods , Auditory Cortex/physiopathology , Brain Waves/physiology , Tinnitus/physiopathology , Audiometry , Alpha Rhythm/physiology , Beta Rhythm/physiology , Case-Control Studies , Delta Rhythm/physiology , Prospective Studies , Reference Values , Reproducibility of Results , Time Factors
2.
Arq. neuropsiquiatr ; 69(5): 829-835, Oct. 2011. ilus
Article in English | LILACS | ID: lil-604227

ABSTRACT

More than 80 years after its introduction by Hans Berger, the electroencephalogram (EEG) remains as an important supplementary examination in the investigation of neurological disorders and gives valuable and accurate information about cerebral function. Abnormal EEG findings may include ictal patterns, interictal epileptiform activity and non-epileptiform abnormalities. The aim of this study is to make an overview on the main non-epileptiform EEG abnormalities, emphasizing the pathologic findings and the importance of their recognition, excluding periodic patterns and EEG physiologic changes. Scientific articles were selected from MEDLINE and PubMed database. The presence of non-epileptiform EEG abnormalities provide evidence of brain dysfunction that are not specific to a particular etiology and may be related to a number of disorders affecting the brain. Although these abnormalities are not specific, they can direct attention to the diagnostic possibilities and guide the best treatment choice.


Mais de 80 anos após sua introdução por Hans Berger, o eletrencefalograma (EEG) permanece como importante exame complementar na investigação de transtornos neurológicas e fornece informações valiosas e precisas a respeito da função cerebral. Achados eletrencefalográficos anormais podem incluir padrões ictais, atividade epileptiforme interictal e anormalidades eletrencefalográficas não epileptiformes. O objetivo deste estudo é fazer uma revisão das principais anormalidades eletrencefalográficas não epileptiformes, enfatizando os achados patológicos e a importância de seu reconhecimento, excluindo padrões periódicos e alterações eletrencefalográficas fisiológicas. Foram selecionados artigos científicos por meio de pesquisa nas bases de dados MEDLINE e PubMed. A presença de anormalidades eletrencefalográficas não epileptiformes fornece evidências de disfunção cerebral, as quais não são específicas para uma etiologia particular e podem estar relacionadas a uma série de desordens que afetam o encéfalo. Embora essas anormalidades não sejam específicas, elas podem direcionar a atenção para as possibilidades diagnósticas e guiar a escolha do melhor tratamento.


Subject(s)
Humans , Brain Diseases/physiopathology , Brain Waves/physiology , Coma/physiopathology , Delta Rhythm/physiology , Electroencephalography
SELECTION OF CITATIONS
SEARCH DETAIL